کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533004 870037 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Image retrieval based on incremental subspace learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Image retrieval based on incremental subspace learning
چکیده انگلیسی

Many problems in information processing involve some form of dimensionality reduction, such as face recognition, image/text retrieval, data visualization, etc. The typical linear dimensionality reduction algorithms include principal component analysis (PCA), random projection, locality-preserving projection (LPP), etc. These techniques are generally unsupervised which allows them to model data in the absence of labels or categories. In this paper, we propose a semi-supervised subspace learning algorithm for image retrieval. In relevance feedback-driven image retrieval system, the user-provided information can be used to better describe the intrinsic semantic relationships between images. Our algorithm is fundamentally based on LPP which can incorporate user's relevance feedbacks. As the user's feedbacks are accumulated, we can ultimately obtain a semantic subspace in which different semantic classes can be best separated and the retrieval performance can be enhanced. We compared our proposed algorithm to PCA and the standard LPP. Experimental results on a large collection of images have shown the effectiveness and efficiency of our proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 11, November 2005, Pages 2047–2054
نویسندگان
, ,