کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533621 870138 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A feature extraction method for use with bimodal biometrics
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A feature extraction method for use with bimodal biometrics
چکیده انگلیسی

Bimodal biometrics has been found to outperform single biometrics and are usually implemented using the matching score level or decision level fusion, though this fusion will enable less information of bimodal biometric traits to be exploited for personal authentication than fusion at the feature level. This paper proposes matrix-based complex PCA (MCPCA), a feature level fusion method for bimodal biometrics that uses a complex matrix to denote two biometric traits from one subject. The method respectively takes the two images from two biometric traits of a subject as the real part and imaginary part of a complex matrix. MCPCA applies a novel and mathematically tractable algorithm for extracting features directly from complex matrices. We also show that MCPCA has a sound theoretical foundation and the previous matrix-based PCA technique, two-dimensional PCA (2DPCA), is only one special form of the proposed method. On the other hand, the features extracted by the developed method may have a large number of data items (each real number in the obtained features is called one data item). In order to obtain features with a small number of data items, we have devised a two-step feature extraction scheme. Our experiments show that the proposed two-step feature extraction scheme can achieve a higher classification accuracy than the 2DPCA and PCA techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 3, March 2010, Pages 1106–1115
نویسندگان
, , ,