کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534021 870206 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficiency investigation of manifold matching for text document classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Efficiency investigation of manifold matching for text document classification
چکیده انگلیسی


• We investigate a methodology for fusion and inference from multiple disparate data sources.
• The methodology separate training data into domain relation learning training data and classifier training data.
• Domain relation learning training data and classifier training data can be from completely different domains.
• Increasing the domain relation learning training data alone can improve classifier performance significantly.
• We present a comparative efficiency investigation of three manifold matching methods for text document classification.

Manifold matching works to identify embeddings of multiple disparate data spaces into the same low-dimensional space, where joint inference can be pursued. It is an enabling methodology for fusion and inference from multiple and massive disparate data sources. In this paper three methods of manifold matching are considered: PoM, which stands for Multidimensional Scaling (MDS) composed with Procrustes; CCA (Canonical Correlation Analysis) and JOFC (Joint Optimization of Fidelity and Commensurability). We present a comparative efficiency investigation of the three methods for a particular text document classification application.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 34, Issue 11, 1 August 2013, Pages 1263–1269
نویسندگان
, ,