کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
536789 | 870621 | 2016 | 12 صفحه PDF | دانلود رایگان |
• We propose a new no-reference quality assessment method for stereoscopic images.
• Two indexes, Binocular Self-similarity and binocular integration, are defined.
• We train a Deep Neural Network in an opinion unaware way to predict local quality.
• Experimental results show this method is consistent with subjective perception.
Quality assessment of three-dimensional (3D) images is more challenging than that of 2D images. The quality of 3D visual experience is one of the most challenging areas of human binocular perception and is affected by multiple factors such as asymmetric stereo image/video compression, depth perception, visual discomfort, and single view quality. In this paper, we propose a new no-reference quality assessment method for stereoscopic images based on Binocular Self-similarity (BS) and Deep Neural Networks (DNN). To be more specific, a BS index is defined and computed according to binocular rivalry and suppression based on the depth image-based rendering technique. Then, a DNN is trained in an opinion unaware way to predict local quality. Binocular integration (BI) index is calculated by using the trained DNN, accounting for binocular integration behaviors. Finally, the final quality score of stereoscopic image is obtained by combining the BS and BI indexes together. Experimental results on four public 3D image quality assessment databases demonstrate that compared with existing methods, the proposed method can achieve high consistency with subjective perception on stereoscopic images with both symmetric and asymmetric distortions.
Journal: Signal Processing: Image Communication - Volume 47, September 2016, Pages 346–357