کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536819 870631 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Video fragment format classification using optimized discriminative subspace clustering
ترجمه فارسی عنوان
طبقه بندی قالب فرمت ویدئو با استفاده از خوشه بندی زیر فضای انتخابی بهینه سازی شده
کلمات کلیدی
قطعه ویدئو، طبقه بندی قالب الگوی همگام سازی، خوشه بندی فضای مجاز، الگوریتم تکاملی مبتنی بر موقعیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Design of a novel video fragment format classification technique.
• Construction of high-dimensional feature vectors by combining synchronization patterns from video fragments.
• Design of an improved adaptive ODiSC algorithm for video format classification further optimized using a PbEA.

All video streams consist of highly compressed coded data. A video stream must be decoded to identify a video. It is impossible to decode and identify a video fragment without knowing the correct video format. Therefore, the first issue that must be addressed is classification of video formats. Although several methods exist for classifying file formats, a technology that specifically classifies the formats of video fragments has not been developed. In this paper, we present a novel approach to classify the formats of small fragments of video streams. Our classification procedure involves construction of high-dimensional feature vectors by combining synchronization patterns extracted from training fragments. The feature vectors are classified using optimized discriminative subspace clustering (ODiSC). The experimental results show a minimum classification error rate of 4.2%, and the precision of identification of the formats was greater than 91% for the four video formats whose fragment size was 256 KB.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 40, January 2016, Pages 26–35
نویسندگان
, ,