کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
537206 870781 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Salient edge and region aware image retargeting
ترجمه فارسی عنوان
برتری برجسته ی منطقه و آگاه شدن از طریق منطقه
کلمات کلیدی
تشخیص سلامت، حکاکی روی، بازخوانی تصویر، تجزیه بافت کاریکاتور، آمار سفارشات بالاتر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We use cartoon-texture decomposition for saliency detection.
• We define a new image importance map to detect salient edges and salient regions.
• We propose a new seam criterion to reduce distortion in large scale structure.
• Our method performs good in preserving salient objects and their contexts.

The purpose of image retargeting is to automatically adapt a given image to fit the size of various displays without introducing severe visual distortions. The seam carving method can effectively achieve this task and it needs to define image importance to detect the salient context of images. In this paper we present a new image importance map and a new seam criterion for image retargeting. We first decompose an image into a cartoon and a texture part. The higher order statistics (HOS) on the cartoon part provide reliable salient edges. We construct a salient object window and a distance dependent weight to modify the HOS. The weighted HOS effectively protects salient objects from distortion by seam carving. We also propose a new seam criterion which tends to spread seam uniformly in nonsallient regions and helps to preserve large scale geometric structures. We call our method salient edge and region aware image retargeting (SERAR). We evaluate our method visually, and compare the results with related methods. Our method performs well in retargeting images with cluttered backgrounds and in preserving large scale structures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 29, Issue 10, November 2014, Pages 1223–1231
نویسندگان
, , , ,