کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
537504 870828 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Position constraint based face image super-resolution by learning multiple local linear projections
ترجمه فارسی عنوان
موقعیت یابی مبتنی بر موقعیت فوق العاده با وضوح تصویر با استفاده از چندین طرح بندی خطی محلی
کلمات کلیدی
تصویر فوق العاده رزولوشن، طرح بندی خطی محلی، توهم چهره، نمایندگی انحصاری، طرح ریزی حفظ انبساط
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We propose to train multiple local linear projections under the position constraint.
• Patches of the same position are assumed to favor the same local mapping function.
• Sparse inner structure of LR patches is expected to be preserved by the HR ones.
• HR patch is directly generated using the corresponding local linear projection.
• State-of-the-art visual and quantitative results have been achieved.

In recent years, many super-resolution methods reveal that the mapping between low- and high-resolution images can be approximated by multiple local linear ones. Moreover, since face image patches located at the same position resemble each other, it is reasonable to assume they favor the same local linear mapping. Inspired by these phenomena, we propose a position constraint based face image super-resolution method which offline trains multiple local linear projections. Two goals are incorporated: First, a low-resolution patch can be linearly mapped to a high-resolution patch using the corresponding local linear projection. Second, the intrinsic sparse structure between low-resolution patches should be preserved by the reconstructed high-resolution ones. The final high-resolution face image is formed by integrating the reconstructed patches. Experimental results demonstrate that the proposed method can achieve face images of satisfactory quality and the online reconstruction stage is computationally fast. Besides, to some extent, the proposed method is insensitive to overlap size and the number of training images.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 32, March 2015, Pages 1–15
نویسندگان
, ,