کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
538252 871051 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Visual saliency detection based on region descriptors and prior knowledge
ترجمه فارسی عنوان
تشخیص پذیرش بصری بر اساس توصیفگرهای منطقه و دانش قبلی
کلمات کلیدی
اهمیت ویژوال، توجه ویژهای، تشخیص شی، ادغام ویژگی های غیر خطی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We proposed a visual saliency method based on region descriptors and prior knowledge of saliency distribution.
• The region descriptors are introduced to better characterize the attribute of image segments.
• The prior knowledge of saliency distribution is exploited to heighten the contrast between salient region and background.
• Our method highlights the salient region uniformly and suppresses the background noise.
• The experiment shows that our method outperforms other state-of-art models.

Visual saliency detection not only plays a significant role, but it is also a challenging task in computer vision. In this paper we propose a new method for saliency detection. It incorporates visual features and spatial information with a guidance of prior saliency knowledge. To provide more accurate visual cues, region descriptors are introduced for image segments by computing two saliency measures, namely feature distinctiveness and spatial distribution. In contrast to previous models which linearly combine basic features for visual cues, we provide nonlinear integration of features. In addition, by taking the advantage of the prior saliency distribution obtained from a convex hull of salient points, we heighten the contrast of fore- and background. Thereby we enhance the final saliency map that uniformly covers the salient objects, while tone down the nonsalient background. Experimental results on a benchmark dataset show that our saliency detection model performs favorably against the state-of-the-art approaches. A detailed experimental evaluation demonstrates that our algorithm excels at saliency detection in cluttered images.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 29, Issue 3, March 2014, Pages 424–433
نویسندگان
, , , ,