کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
538278 871065 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Image super-resolution by textural context constrained visual vocabulary
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Image super-resolution by textural context constrained visual vocabulary
چکیده انگلیسی

Example-based super-resolution (SR) approach hallucinates the missing high-resolution (HR) details by learning the example image patches. This approach implicitly assumes that the similarity of the low-resolution (LR) patches can infer the similarity of the corresponding HR patches. However, this similarity preserving assumption may not be held in practice. Thus the example-based super-resolved image inevitably contains artifacts not close to the ground truth. In this paper, we propose a novel single-image SR method by integrating an enforced similarity preserving process by using visual vocabulary into example-based SR approach. By jointly learning the HR and LR visual vocabularies, we can obtain a geometric co-occurrence prior to make the geometric similarity preserved within each visual word. We further propose a two-step framework for SR. The first step estimates the optimum visual word using textural context cue while the second step enforces the visual word subspace constraint and reconstruction constraint for estimating the final result. Experiments demonstrate the effectiveness of our method for recovering the missing HR details, especially texture.


► Proposed a similarity preserving process using visual vocabulary.
► Proposed a joint clustering method for learning geometric co-occurrence prior.
► Proposed a two-step framework for super-resolution.
► Proposed to estimate visual word using textural context cue.
► Combined word subspace constraint and reconstruction constraint for super-resolution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 27, Issue 10, November 2012, Pages 1096–1108
نویسندگان
, , ,