کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
542093 | 871522 | 2009 | 6 صفحه PDF | دانلود رایگان |

Heterogeneous integrated systems, combining, e.g. optical, magnetic, chemical devices and microelectronics, are becoming increasingly a matter of interest. Unfortunately, current system engineers lack the design and test tools to develop these emerging systems and guarantee a certain quality level. Furthermore, if these systems are used in a biological environment, bio-specific time-dependent faults can occur. An example is jamming of fluidic channels due to living, growing biological material. This paper will show fluidic modelling of our devices in VHDL-AMS, and apply it to system fault co-simulation obtained with regard to a new heterogeneous integrated device. It will aid the designer to investigate the influences of faults in the electrical and fluidic domain and take subsequent action, e.g. by adding design-for-test (DfT) observation hardware.
Journal: Microelectronics Journal - Volume 40, Issue 7, July 2009, Pages 1048–1053