کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
542494 | 871556 | 2009 | 4 صفحه PDF | دانلود رایگان |

The results of simulations of Γ−X scattering in GaAs/AlGaAs quantum wells are presented, discussing the importance of the mole fraction, doping density, and lattice and electron temperatures in determining the scattering rates. A systematic study of Γ−X scattering in GaAs/AlxGa1−xAs heterostructures, using a single quantum well to determine the importance of well width, molar concentration x, lattice temperature, and doping density, has been performed. After this we consider a double quantum well to determine the role of intervalley scattering in the transport through single-layer heterostructures, i.e. Γ−X−Γ scattering compared with Γ−Γ scattering. Finally, we estimate the relative importance of intervalley scattering in a GaAs-based quantum-cascade laser device and compare it with other relevant scattering mechanisms important to describe carrier dynamics in the structure. Our simulations suggest that Γ−X scattering can be significant at room temperature but falls off rapidly at lower temperatures.
Journal: Microelectronics Journal - Volume 40, Issue 3, March 2009, Pages 577–580