کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5448601 1511780 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation
چکیده انگلیسی
Some X-ray irradiation-induced electrical characteristics of the Au/anthraquinone/p-Si and the Au/pyridine/p-Si junction devices have been investigated. The experimental ideality factors increased for both devices with increasing irradiation dose from 25 Gy to 150 Gy. These values ranged from 1.10 to 1.52 for Au/anthraquinone/p-Si and from 1.46 to 1.77 for Au/pyridine/p-Si, respectively. Furthermore, the barrier height of Au/anthraquinone/p-Si increased with increasing irradiation dose from 0.75 to 0.91 eV, whereas it displayed about a constant value for Au/pyridine/p-Si. In addition, the series resistance of both devices increased with x-ray dose too. The increase in the series resistance with x-ray irradiation has been attributed to the decrease in the active dopant densities. It was seen that the ionization damage is effective on most of the junction characteristics. The leakage current of the Au/anthraquinone/p-Si device decreased with x-ray irradiation since the irradiation induced the formation of electron-hole pairs and hydroquinone structure, and thus some of them are trapped by the interface states. The degradation of the I-V curves of Au/pyridine/p-Si/Al device is attributed to the variation of the surface or interface states distribution for the devices. The reverse and forward bias currents relatively increased after x-ray irradiation because of the decrease in bulk lifetime. In addition, ATR-FTIR spectra of anthraquinone and pyridine films showed that pyridine is more stable than anthraquinone under x-ray irradiation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Chemistry and Physics - Volume 183, 1 November 2016, Pages 516-523
نویسندگان
, , , ,