کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5450527 1513060 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Net load forecasts for solar-integrated operational grid feeders
ترجمه فارسی عنوان
پیش بینی های خالص بار برای فیدرهای شبکۀ عملیاتی خورشیدی
کلمات کلیدی
پیش بینی های بار خالص تصویربرداری آسمان، ماشین آلات بردار پشتیبانی، شبکه های عصبی مصنوعی، یکپارچه سازی خورشیدی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
This work proposes forecast models for solar-integrated, utility-scale feeders in the San Diego Gas & Electric operating region. The models predict the net load for horizons ranging from 10 to 30 min. The forecasting methods implemented include hybrid methods based on Artificial Neural Network (ANN) and Support Vector Regression (SVR), which are both coupled with image processing methods for sky images. These methods are compared against reference persistence methods. Three enhancement methods are implemented to further decrease forecasting error: (1) decomposing the time series of the net load to remove low-frequency load variation due to daily human activities; (2) segregating the model training between daytime and nighttime; and (3) incorporating sky image features as exogenous inputs in the daytime forecasts. The ANN and SVR models are trained and validated using six-month measurements of the net load and assessed using common statistic metrics: MBE, MAPE, rRMSE, and forecast skill, which is defined as the reduction of RMSE over the RMSE of reference persistence model. Results for the independent testing set show that data-driven models, with the enhancement methods, significantly outperform the reference persistence model, achieving forecasting skills (improvement over reference persistence model) as large as 43% depending on location, solar penetration and forecast horizons.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy - Volume 158, December 2017, Pages 236-246
نویسندگان
, , , , ,