کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5452738 | 1513784 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fatigue crack propagation in Ductile Cast Irons: an Artificial Neural Networks based model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
شیمی مواد
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
All the available “Paris-like” models (analytical relationships between da/dN, crack growth rates, and ÎK, stress intensity factor amplitude) are not able to take into account the possible influence of all the parameters that influence the fatigue crack propagation process. Among them, the stress ratio R (e.g., Kmin/Kmax) is one of the most investigated and, although in the last decades the influence of R on the different propagation mechanisms has been widely investigated (e.g., crack closure effect), this parameter is often considered as an independent variable in the “Paris-like” models. A different approach can be followed using the Artificial Neural Networks that are able to consider all the possible parameters, with the condition of a satisfactory training stage. In this work, an artificial Neural Networks based model is optimized considering the influence of the stress ratio on the fatigue crack propagation in a ferritic-pearlitic Ductile Cast Iron.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Structural Integrity - Volume 3, 2017, Pages 291-298
Journal: Procedia Structural Integrity - Volume 3, 2017, Pages 291-298
نویسندگان
Laura D'Agostino, Alberto De Santis, Vittorio Di Cocco, Daniela Iacoviello, Francesco Iacoviello,