کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
545510 | 1450554 | 2009 | 6 صفحه PDF | دانلود رایگان |

Power electronics uses semiconductor technology to convert and control electrical power. Demands for efficient energy management, conversion and conservation, and the increasing take-up of electronics in transport systems has resulted in tremendous growth in the use of power electronics devices such as Insulated Gate Bipolar Transistors (IGBT’s). The packaging of power electronics devices involves a number of challenges for the design engineer in terms of reliability. For example, IGBT modules will contain a number of semiconductor dies within a small footprint bonded to substrates with aluminum wires and wide area solder joints. To a great extent, the reliability of the package will depend on the thermo-mechanical behavior of these materials. This paper details a physics of failure approach to reliability predictions of IGBT modules. It also illustrates the need for a probabilistic approach to reliability predictions that include the effects of design variations. Also discussed are technologies for predicting the remaining life of the package when subjected to qualification stresses or in service stresses using prognostics methods.
Journal: Microelectronics Reliability - Volume 49, Issues 9–11, September–November 2009, Pages 1250–1255