کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5455705 1514648 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An RVE procedure for micromechanical prediction of mechanical behavior of dual-phase steel
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله
An RVE procedure for micromechanical prediction of mechanical behavior of dual-phase steel
چکیده انگلیسی
A “bottom-up” representative volume element (RVE) for a dual phase steel was constructed based on measured microstructural properties (“microproperties”). This differs from the common procedure of inferring hypothetical microproperties by fitting to macroscopic behavior using an assumed micro-to-macrolaw. The bottom-up approach allows the assessment of the law itself by comparing RVE-predicted mechanical behavior with independent macroscopic measurements, thus revealing the nature of the controlling micromechanisms. An RVE for DP980 steel was constructed using actual microproperties. Finite element (FE) simulations of elastic-plastic transitions were compared with independent loading-unloading-loading and compression-tension experiments. Constitutive models of three types were utilized: 1) a standard continuum model, 2) a standard Crystal Plasticity (CP) model, and 3) a SuperDislocation (SD) model similar to CP but including the elastic interactions of discrete dislocations. These comparisons led to following conclusions: 1) While a constitutive model that ignores elastic interaction of defects can be fit to macroscopic or microscopic behavior, it cannot represent both accurately, 2) Elastic interactions among dislocations are the predominant source of nonlinearity in the nominally-elastic region (i.e. at stresses below the standard yield stress), and 3) Continuum stress inhomogeneity arising from the hard martensite / soft ferrite microstructure has a minor role in the observed transitional nonlinearity in the absence of discrete dislocation interactions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: A - Volume 695, 17 May 2017, Pages 101-111
نویسندگان
, , , , , ,