کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
545710 871846 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An FPGA based scalable architecture of a stochastic state point process filter (SSPPF) to track the nonlinear dynamics underlying neural spiking
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سخت افزارها و معماری
پیش نمایش صفحه اول مقاله
An FPGA based scalable architecture of a stochastic state point process filter (SSPPF) to track the nonlinear dynamics underlying neural spiking
چکیده انگلیسی

Recent studies have verified the efficiency of stochastic state point process filter (SSPPF) in coefficients tracking in the modeling of the mammalian nervous system. In this study, a hardware architecture of SSPPF is both designed and implemented on a field-programmable gate array (FPGA). It provides a time-efficient method to investigate the nonlinear neural dynamics through coefficients tracking of a generalized Laguerre–Volterra model describing the spike train transformations of different brain sub-regions. The proposed architecture is able to process matrices and vectors with arbitrary sizes. It is designed to be scalable in parallel degree and to provide different customizable levels of parallelism, by exploring the intrinsic parallelism of the FPGA. Multiple architectures with different degrees of parallelism are explored. This design maintains numerical precision and the proposed parallel architectures for coefficients estimation are also much more power efficient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microelectronics Journal - Volume 45, Issue 6, June 2014, Pages 690–701
نویسندگان
, , , , , , ,