کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5466702 | 1518297 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unmixing hyperspectral data by using signal subspace sampling
ترجمه فارسی عنوان
با استفاده از نمونه برداری از سیگنال سیگنال، داده های هیپرشکلر را با هم مخلوط کنید
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
فناوری نانو (نانو تکنولوژی)
چکیده انگلیسی
This paper demonstrates how Signal Subspace Sampling (SSS) is an effective pre-processing step for Non-negative Matrix Factorization (NMF) or Vertex Component Analysis (VCA). The approach allows to uniquely extract non-negative source signals which are orthogonal in at least one observation channel, respectively. It is thus well suited for processing hyperspectral images from X-ray microscopy, or other emission spectroscopies, into its non-negative source components. The key idea is to resample the given data so as to satisfy better the necessity and sufficiency conditions for the subsequent NMF or VCA. Results obtained both on an artificial simulation study as well as based on experimental data from electron-microscopy are reported.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultramicroscopy - Volume 182, November 2017, Pages 205-211
Journal: Ultramicroscopy - Volume 182, November 2017, Pages 205-211
نویسندگان
Jakob Spiegelberg, Shunsuke Muto, Masahiro Ohtsuka, Kristiaan Pelckmans, Ján Rusz,