کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5475316 1521094 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of Oskarshamn-2 stability event using TRACE/SIMULATE-3K and comparison to TRACE/PARCS and SIMULATE-3K stand-alone
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Analysis of Oskarshamn-2 stability event using TRACE/SIMULATE-3K and comparison to TRACE/PARCS and SIMULATE-3K stand-alone
چکیده انگلیسی
With the goal to enhance the capability to perform best-estimate simulations of Light Water Reactors (LWRs) transients, with strong coupling between core neutronics and plant thermal-hydraulic, a coupling between TRACE and SIMULATE-3K (TS3K) was developed in collaboration between PSI and Studsvik for analyses involving interactions between system and core. In order to verify the coupling scheme and the coupled code capabilities to simulate complex transients, the OECD/NEA Oskarshmn-2 (O-2) Stability benchmark was modeled with the coupled code TS3K. The main goal of this paper is to present TS3K analyses of the Oskarshamn-2 stability event, noting that this constitutes the first reported assessment of this code system for a BWR stability problem. A systematic analysis is carried out using different time-space discretization schemes in order to identify an optimized methodology to simulate correctly the O-2 stability event. In this context, the TS3K results are compared to the available benchmark data both for steady-state and transient conditions. The results show that using a refined model in space and time, the TS3K model can successfully capture the entire behavior of the transient qualitatively, i.e. onset of the instability with growing oscillation amplitudes, as well as quantitatively, i.e. Decay Ratio and resonance frequency. In addition, the results are compared also to those obtained using TRACE/PARCS and S3K stand-alone, which allows a systematic comparison between different codes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 102, April 2017, Pages 190-199
نویسندگان
, , , , , ,