کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5475553 | 1521413 | 2017 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The wind power time series always exhibits nonlinear and non-stationary features, which make it very difficult to predict accurately. In this paper, a new chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-sample entropy (EEMD-SE) and full-parameters continued fraction is proposed. In this proposed method, EEMD-SE technique is used to decompose original wind power series into a number of subsequences with obvious complexity differences. The forecasting model of each subsequence is created by full-parameters continued fraction. On the basis of the inverse difference quotient continued fraction, the full-parameters continued fraction model is proposed. The parameters of model are optimized by the primal dual state transition algorithm (PDSTA). The effectiveness of the proposed approach is demonstrated with practical hourly data of wind power generation in Xinjiang. A comprehensive error analysis is carried out to compare the performance with other approaches. The forecasting results show that forecast improvement is observed based on EEMD-SE and full-parameters continued fraction model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 138, 1 November 2017, Pages 977-990
Journal: Energy - Volume 138, 1 November 2017, Pages 977-990
نویسندگان
Cong Wang, Hongli Zhang, Wenhui Fan, Ping Ma,