کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5475917 1521422 2017 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine
ترجمه فارسی عنوان
پیش بینی قدرت برق با استفاده از دستگاه بردار حمایت از یکپارچه متحرک حرکتی یکپارچه و یکپارچه ترکیبی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
چکیده انگلیسی
Precise prediction of wind power can not only conduct wind turbine's operation, but also reduce the impact on power systems when wind energy is injected into the grid. A hybrid autoregressive fractionally integrated moving average and least square support vector machine model is proposed to forecast short-term wind power. The proposed hybrid model takes advantage of the respective superiority of autoregressive fractionally integrated moving average and least square support vector machine. First, the autocorrelation function analysis is used to detect the long memory characteristics of wind power series, and the autoregressive fractionally integrated moving average model is applied to forecast linear component of wind power series. Then the least square support vector machine model is established to forecast nonlinear component of wind power series by making use of wind speed, wind direction and residual error series of the autoregressive fractionally integrated moving average model. Finally, the prediction of wind power is obtained by integrating the prediction results of autoregressive fractionally integrated moving average and least square support vector machine. Compared with other models, the results of two examples demonstrate that the proposed hybrid model has higher accuracy of wind power prediction in terms of three performance indicators.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 129, 15 June 2017, Pages 122-137
نویسندگان
, , , , ,