| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5476458 | 1521426 | 2017 | 16 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Cloud computing-based energy optimization control framework for plug-in hybrid electric bus
												
											ترجمه فارسی عنوان
													چارچوب کنترل بهینه سازی انرژی مبتنی بر ابر رایانه برای پلاگین در اتوبوس الکتریکی ترکیبی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												اتوبوس برق هیبریدی پلاگین، چارچوب کنترل بهینه سازی انرژی، خوشه بندی شرایط رانندگی، مدیریت انرژی، کنترل افسردگی تصادفی تصادفی،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی انرژی
													انرژی (عمومی)
												
											چکیده انگلیسی
												Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 125, 15 April 2017, Pages 11-26
											Journal: Energy - Volume 125, 15 April 2017, Pages 11-26
نویسندگان
												Chao Yang, Liang Li, Sixiong You, Bingjie Yan, Xian Du, 
											