کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5478486 | 1521811 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Transcriptome and proteome analysis of nitrogen starvation responses in Synechocystis 6803 ÎglgC, a mutant incapable of glycogen storage
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Molecular mechanisms that regulate carbon flux are poorly understood in algae. The ÎglgC mutant of the cyanobacterium Synechocystis sp. PCC 6803 is incapable of glycogen storage and displays an array of physiological responses under nitrogen starvation that are different from wild-type (WT). These include non-bleaching phenotype and the redirection of photosynthetically fixed carbon towards excreted organic acids (overflow metabolism) without biomass growth. To understand the role of gene/protein expression in these responses, we followed the time course of transcripts by genome-scale microarrays and proteins by shotgun proteomics in ÎglgC and WT cells upon nitrogen starvation. Compared to WT, the degradation of phycobilisome rod proteins was delayed and attenuated in the mutant, and the core proteins were less degraded; both contributed to the non-bleaching appearance despite the induction of nblA genes, suggesting the presence of a break in regulation of the phycobilisome degradation pathway downstream of nblA induction. The mutant displayed NtcA-mediated transcriptional response to nitrogen starvation, indicating that it is able to sense nitrogen status. Furthermore, some responses to nitrogen starvation appear to be stronger in the mutant, as shown by the increases in transcripts for the transcriptional regulator, rre37, which regulates central carbon metabolism. Accordingly, multiple proteins involved in photosynthesis, central carbon metabolism, and carbon storage and utilization showed lower abundance in the mutant. These results indicate that the transition in the central carbon metabolism from growth to overflow metabolism in ÎglgC does not require increases in expression of the overflow pathway enzymes; the transition and non-bleaching phenotype are likely regulated instead at the metabolite level.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Algal Research - Volume 21, January 2017, Pages 64-75
Journal: Algal Research - Volume 21, January 2017, Pages 64-75
نویسندگان
Damian Carrieri, Thomas Lombardi, Troy Paddock, Melissa Cano, Gabriel A. Goodney, Ambarish Nag, William Old, Pin-Ching Maness, Michael Seibert, Maria Ghirardi, Jianping Yu,