کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
547867 | 872063 | 2009 | 6 صفحه PDF | دانلود رایگان |

An analytical model that simulates the performance of an elementary thin silicon solar cell with a thin film quasi-monocrystalline porous silicon (QMPS) at the backside reflector is developed. A complete set of equations for the photocurrent generated under the effect of the reflected light is solved analytically in each region. The collection of the light absorbed by the QMPS layer has been discussed and the analytical solution of the light-generated current in this layer is derived. The maximum of the photocurrent density calculated in the present study is in accordance with the numerical values established by Bergmann et al. Furthermore, the influence that the layer's number of double porosities and high porosity have on the photovoltaic parameters is studied. It is demonstrated that the photovoltaic parameters increase with the number of double porosities that the layer might have in a given structure. When the QMPS layer is formed by three double-porosity layers 20%/80% and for a 5-μm-thick film c-Si, the backside reflector gives a total improvement of about 6 mA/cm2 for the photocurrent density and 3.2% for the cell efficiency.
Journal: Microelectronics Journal - Volume 40, Issue 1, January 2009, Pages 120–125