کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
548016 | 872083 | 2007 | 5 صفحه PDF | دانلود رایگان |

A simplified, cost-effective flexible micro-electronic-mechanical systems (MEMS) technology has been developed for realizing a temperature-sensing array on a flexible polyimide substrate. The fabrication technique utilized liquid polyimide to form flexible film on the rigid silicon wafer using a temporary carrier during the fabrication. The platinum thin film is employed as temperature sensitive material and 8×8 temperature-sensing arrays were micromachined on the polyimide, from which the silicon wafer carrier was removed at the end of fabrication. The platinum thin film temperature sensor exhibits excellent linearity and its temperature coefficient of resistance reaches 0.00291 °C−1. Because of the effective thermal isolation, the flexible temperature sensors show a high sensitivity of 1.12 Ω/°C at 10 mA to the constant drive current. The flexible MEMS technology based on liquid polyimide enables the development of flexible, compliant, robust, and multi-modal sensor skins for many other important applications, such as robotics, biomedicine, and wearable microsystems.
Journal: Microelectronics Journal - Volume 38, Issue 3, March 2007, Pages 360–364