کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5480469 1522090 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Managing the trade-offs among yield increase, water resources inputs and greenhouse gas emissions in irrigated wheat production systems
ترجمه فارسی عنوان
مدیریت ترکیبات در میان افزایش تولید، منابع آب و انتشار گازهای گلخانه ای در سیستم های تولید آرد گندم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Irrigation is a crucial measure for ensuring food security; however, the complex linkages among yield increases, water productivity, and greenhouse gas (GHG) emissions are unclear for irrigated wheat production in China. Here a meta-analysis was conducted to determine the trade-offs among yield increase, water productivity, and GHG emissions in irrigated Chinese wheat production systems. Grain yield in wheat irrigation systems with 172 mm of supplemental irrigation water increased by 23% owing to the increase in aboveground biomass, spike number, and grain number, whereas water productivity in irrigated wheat decreased by 6% compared to non-irrigated systems. Water productivity increased from 15.7 to 16.5 kg ha−1 mm−1 with conventional irrigation systems to 17.5 kg ha−1 mm−1 with optimized irrigation systems, similar to increases found in non-irrigated systems (17.8-18.0 kg ha−1 mm−1). Compared with non-irrigated systems, yield-scaled GHG emissions in irrigated systems decreased by 2-8% using surface water, and increased by 15-68% using groundwater. Yield-scaled GHG emissions in optimized irrigation systems decreased by 3-19% compared to conventional irrigation systems. In conclusion, irrigation was a crucial practice for ensuring food security, but water productivity and yield-scaled GHG emissions should be carefully considered when making design decisions. In the future, adoption of integrated irrigation management systems was crucial to achieve collective improvements in yield, water productivity, and environmental benefits.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cleaner Production - Volume 164, 15 October 2017, Pages 567-574
نویسندگان
, , , , , ,