کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5480596 | 1522103 | 2017 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Simulation-based machining condition optimization for machine tool energy consumption reduction
ترجمه فارسی عنوان
بهینه سازی شرایط ماشینکاری برای شبیه سازی برای کاهش مصرف انرژی ماشین ابزار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ماشین مجازی، شبیه سازی ماشین ابزار، پروفیل انرژی، بهینه سازی پارامترهای ماشینکاری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Optimizing the machining condition is one of the effective ways for reducing the energy consumption of machine tools at a unit process level. Based on statistical approaches with design of experiments, various methods have been developed to reduce the energy consumption by optimizing the machining condition. However, the methods cannot be easily utilized when the optimization target or machine tool design is modified because the optimal solution is determined based on the experimentally measured data. In this study, a simulation-based method that utilizes a virtual machine tool (VMT) to optimize the machining condition is proposed. The VMT model is designed to focus on estimating the energy consumption during machining and is developed by replicating real machine tools. Based on the VMT model, a genetic algorithm is used to optimize the machining condition to reduce the energy consumption. The changes in the optimization target or machine tool design are easily considered by modifying the cost function or component model, respectively. The proposed method is applied to reduce the energy consumption of a three-axis milling machine. The optimal feed rate and spindle speed are obtained for each line of the part program when the thrust force is limited. An experimental setup of the machine tool with an energy consumption monitoring system is constructed to demonstrate the effectiveness of the proposed method. The results show that the total energy consumption of the machine tool reduces by 13% owing to the optimization.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cleaner Production - Volume 150, 1 May 2017, Pages 352-360
Journal: Journal of Cleaner Production - Volume 150, 1 May 2017, Pages 352-360
نویسندگان
Wonkyun Lee, Seong Hyeon Kim, Jaesang Park, Byung-Kwon Min,