کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5481048 1522098 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving thermal response of lightweight timber building envelopes during cooling season in three European locations
ترجمه فارسی عنوان
بهبود واکنش حرارتی پاکت نامه های ساختمان سبک وزن در فصل سرد در سه مکان اروپایی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
In recent years the use of wood based products in building industry has expanded. Although lightweight timber constructions essentially decrease environmental impact of a building, their consequential low thermal mass can lead to overheating during summer. Therefore, the purpose of this paper was to investigate various examples of enhanced lightweight constructions from the thermal response point of view. Several improvements were investigated (e.g. clay boards, wood wool thermal insulation, Phase Change Materials, etc.) and compared with the performance of a conventional thermally insulated high mass wall. Finite element model was created and dynamic thermal performance of enhanced lightweight external walls was analysed in three different European locations: Helsinki (Finland), Vienna (Austria) and Madrid (Spain). Certain enhancements resulted in lower internal surface temperature of constructions up to 1 °C, depending on location. In addition, it was shown that in order to further improve thermal performance, application of high intensity ventilation is necessary, which additionally lowered the internal surface temperature up to 8 °C. It was shown that enhanced and naturally cooled lightweight constructions are more suitable for locations with milder summer temperatures (Northern, Central Europe), rather than for hot climates (Mediterranean). It was concluded that the application of lightweight constructions should be thoughtful in order to achieve adequate thermal response of buildings. However, in lightweight buildings the integration of materials characterised by high thermal mass, high thermal effusivity and low environmental impact should be encouraged.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cleaner Production - Volume 156, 10 July 2017, Pages 939-952
نویسندگان
, , , ,