کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
5483400 1522317 2017 19 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions
ترجمه فارسی عنوان
مقایسه روش های عددی و الگوریتم های بهینه سازی متهوریستی برای برآورد پارامترهای ارزیابی پتانسیل انرژی باد در مناطق کم باد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی


- The low-speed wind energy potential in Yangtze River Delta City Group in China is assessed.
- BA, CS and PSO are employed for tuning the optimal parameters of distributions.
- Numerical methods and metaheuristic algorithms are compared.
- MM is the best numerical methods, however BA, CS and PSO are better than MM.
- BA-Weibull and PSO-Weibull perform the best among the distributions.

Recently, with energy crises and environmental problems becoming increasingly obvious, the utilization of wind power has become a big concern. Meanwhile, the inconsistent relationship between China's economy and wind energy potential distribution has caused inevitable difficulties in transportation of wind power and even in grid integration. Therefore, the establishment of electrical power system integrated with local-used low-speed wind power has got considerable attention.Weibull, Rayleigh, Gamma and Lognormal probability distributions are evaluated. Then three numerical methods (NMs) - method of moment (MM), maximum likelihood estimation (MLE), and least squares method (LSM), are applied to get parameter estimation in the these distributions. Additionally, another three comparison metaheuristic optimization algorithms (MOAs), including bat algorithm (BA), cuckoo search algorithm (CS) and particle swarm optimization (PSO) are employed as comparison methods to tune the optimal parameters.Experimental results conclude that in this case MOAs perform better than NMs. Moreover, BA-Weibull, CS-Weibull, and PSO-Weibull with only a slight difference outperform all of the other distributions. Specifically, BA-Weibull and PSO-Weibull are only slightly superior to CS-Weibull. The average wind power density, the effective wind power density, the available factor and the capacity factor of wind turbine are considered as key determinant factors in assessing the low-speed wind energy potential, which are directly influenced by the parameters in Weibull model. Moreover, the wind potential assessment in the low-speed wind areas can provide an essential technique support for further investment and development, even for further wind farm construction and economy evaluation. Consequently, accurate parameter estimation is of great importance in low speed wind energy resource assessment.

322

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable and Sustainable Energy Reviews - Volume 69, March 2017, Pages 1199-1217
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت