کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5486492 | 1399464 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A study on predicting network corrections in PPP-RTK processing
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم فضا و نجوم
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Due to the latency generated by the network processing and data transfer, the network corrections are delayed for the real-time user processing. To bridge the latencies, we discuss and compare two prediction approaches making use of the network corrections without and with the dynamic satellite clock model, respectively. The first prediction approach is based on the polynomial fitting of the estimated network parameters, while the second approach directly follows the dynamic model in the Kalman filter of the network processing and utilises the satellite clock drifts estimated in the network processing. Using 1Â Hz data from two networks in Australia, the influences of the two prediction approaches on the user positioning results are analysed and compared for latencies ranging from 3 to 10Â s. The accuracy of the positioning results decreases with the increasing latency of the network products. For a latency of 3Â s, the RMS of the horizontal and the vertical coordinates (with respect to the ground truth) do not show large differences applying both prediction approaches. For a latency of 10Â s, the prediction approach making use of the satellite clock model has generated slightly better positioning results with the differences of the RMS at mm-level. Further advantages and disadvantages of both prediction approaches are also discussed in this contribution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 60, Issue 7, 1 October 2017, Pages 1463-1477
Journal: Advances in Space Research - Volume 60, Issue 7, 1 October 2017, Pages 1463-1477
نویسندگان
Kan Wang, Amir Khodabandeh, Peter Teunissen,