کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5486646 | 1399471 | 2017 | 47 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved infrared precipitation estimation approaches based on k-means clustering: Application to north Algeria using MSG-SEVIRI satellite data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم فضا و نجوم
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, two new infrared precipitation estimation approaches based on the concept of k-means clustering are first proposed, named the NAW-Kmeans and the GPI-Kmeans methods. Then, they are adapted to the southern Mediterranean basin, where the subtropical climate prevails. The infrared data (10.8 μm channel) acquired by MSG-SEVIRI sensor in winter and spring 2012 are used. Tests are carried out in eight areas distributed over northern Algeria: Sebra, El Bordj, Chlef, Blida, Bordj Menael, Sidi Aich, Beni Ourthilane, and Beni Aziz. The validation is performed by a comparison of the estimated rainfalls to rain gauges observations collected by the National Office of Meteorology in Dar El Beida (Algeria). Despite the complexity of the subtropical climate, the obtained results indicate that the NAW-Kmeans and the GPI-Kmeans approaches gave satisfactory results for the considered rain rates. Also, the proposed schemes lead to improvement in precipitation estimation performance when compared to the original algorithms NAW (Nagri, Adler, and Wetzel) and GPI (GOES Precipitation Index).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 59, Issue 12, 15 June 2017, Pages 2880-2900
Journal: Advances in Space Research - Volume 59, Issue 12, 15 June 2017, Pages 2880-2900
نویسندگان
Fatiha Mokdad, Boualem Haddad,