کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5486731 | 1399478 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Understanding GDOP minimization in GNSS positioning: Infinite solutions, finite solutions and no solution
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم فضا و نجوم
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Although purely using the GNSS (Global Navigation Satellite System) users cannot obtain the theoretical GDOP minimum unless the GNSS positioning is aided by a certain number of pseudolites, discussing this problem is still meaningful in understanding the issues about the positioning geometry, such as the PDOP minimization. Many literatures have pointed that the GDOP (Geometric Dilution of Precision) minimum in 3-D positioning is the root square of 10/n where n is the total number of GNSS satellites or ground-based beacons with known coordinates. As the case with five known points concerned in this paper, the current knowledge indicates that the GDOP can reach the minimum the root square of 2, but our discussion shows that the GDOP minimum with five known points cannot get the theoretical minimum the root square of 2, although there are infinite positioning configurations with the lowest PDOP. Fortunately, we can find a positioning configuration with the GDOP 1.428 which is very close to the theoretical minimum 1.414. The PDOP can always reach the theoretical minimum the root square of 9/n, and there are infinite solutions for n > 4. However for GDOP minimization, only when n > 5, infinite solutions can be obtained. The configurations with the lowest GDOPs can be given by solving a set of nonlinear algebraic equations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 59, Issue 3, 1 February 2017, Pages 775-785
Journal: Advances in Space Research - Volume 59, Issue 3, 1 February 2017, Pages 775-785
نویسندگان
Shuqiang Xue, Yuanxi Yang,