کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
548922 | 872300 | 2015 | 5 صفحه PDF | دانلود رایگان |

A hydrogen plasma treatment on the back-channel region of large-sized amorphous silicon thin film transistor (a-Si TFT) with high RF power and optimal process time of 20 s is proposed in this work to effectively reduce off current (Ioff) and threshold voltage (Vth) shift under high and low electrical-field stresses. The channel width (W) of large-sized a-Si TFT is ranged from 1000 to 10,000 μm, which are comparable to the realistic TFTs used in the gate driver on array (GOA) of display. It is experimentally found that the mechanism of Vth shift (ΔVth) after high electrical stress is dominated by the defect generation in a-Si layer rather than charge trapping in the gate insulator (GI) layer, which is different from the observation in previous literatures. It could be due to the effects of back-channel treatment (BCT). In addition, after low electrical stresses, the mechanism of ΔVth is dominated by defect generation in a-Si layer, which is consistent with previous reports.
Journal: Microelectronics Reliability - Volume 55, Issue 11, November 2015, Pages 2178–2182