کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5491264 1524797 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Massive dielectric properties enhancement of MWCNTs/CoFe2O4 nanohybrid for super capacitor applications
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Massive dielectric properties enhancement of MWCNTs/CoFe2O4 nanohybrid for super capacitor applications
چکیده انگلیسی
Nanohybrids of CoFe2O4/MWCNTs with increasing MWCNTs loading from 0.0%, 0.5%, 1%, 1.5%, 2% and 5% by weight were prepared by a novel method of dispersion using ortho-xylene as a dispersive medium for the first time. In our current research, nanoparticles of cobalt ferrite were synthesized via wet chemical co-precipitation route. Non-magnetic MWCNTs matrix was dispersed uniformly in the synthesized ferrite nanoparticles using ortho-xylene as a polar solvent. and Impedance Analyzer were utilized to effectively investigate the synthesized nanohybrid. The obtained X-Ray Powder Diffraction (XRD) images confirm the pure Face Centered Cubic (FCC) single phase of CoFe2O4/MWCNTs nanohybrid. The average crystallite size remains within the range of 26±6 nm. Scanning Electron Microscopy (SEM) results showed aggregation of ferrite nanoparticles on MWCNTs. Fourier Transform Infrared Spectroscopy (FTIR) was utilized to study the band positions. The dielectric properties were found to be massively enhanced with increased loadings of MWCNTs. The dielectric constant (ε/) was massively enhanced from 45 for pure cobalt ferrites to 4.32×1012 for 5% MWCNTs loading at 100 Hz. The dielectric and tangent losses also increased from 21 and 0.47 for pure cobalt ferrites to 2.33×1017 and 5.39×104 at 100 Hz for 5% MWCNTs loading respectively indicating that this area of research should further be exploited in the realm of super capacitors applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Magnetism and Magnetic Materials - Volume 424, 15 February 2017, Pages 382-387
نویسندگان
, , , , , , , ,