کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5511878 | 1540215 | 2017 | 40 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Feasible protein aggregation of phosphorylated poly-γ-glutamic acid derivative from Bacillus subtilis (natto)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Poly-γ-glutamic acid (PGA) was modified with phosphorylating agents such as sodium metaphosphate and potassium metaphosphate in the culture medium of Bacillus subtilis (natto). The highly phosphorylated PGA derivatives were prepared and investigated for their chemical and physicochemical properties. The PGA derivatives had approximately 7% (W/W) inorganic phosphorus and characteristic absorbance PO2â bands at 1082 cmâ1 and 1260 cmâ1 by Fourier Transform Infrared Spectroscopy. The derivative modified by sodium metaphosphate (J-5) was easily hydrated in water and had extremely low viscosity. The shear rate-induced transition leading to the decrease of viscosity was not observed in J-5 whereas the derivative modified by potassium metaphosphate (J-6) as well as unmodified PGA (J-1) showed the typical decrease of viscosity. In circular dichroism (CD) measurement of J-5, there was a significant loss of the negative chirality CD signal, implying that protein aggregation occured at decreasing pH from 6.2 to 4.4. The thioflavin T fluorescence intensity of the aqueous solution in the J-5 was extremely high despite the absence of heat-treatment. The results indicate that the J-5 is the likeliest type of aggregation by β-sheet cross-linking which is relevant to protein diseases like Alzheimer's disease.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Biological Macromolecules - Volume 103, October 2017, Pages 484-492
Journal: International Journal of Biological Macromolecules - Volume 103, October 2017, Pages 484-492
نویسندگان
Osamu Kurita, Toru Sago, Kaori Umetani, Yasushi Kokean, Chizuru Yamaoka, Nobuyuki Takahashi, Hiroyuki Iwamoto,