کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
552175 873187 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simple decision forests for multi-relational classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Simple decision forests for multi-relational classification
چکیده انگلیسی

An important task in multi-relational data mining is link-based classification which takes advantage of attributes of links and linked entities, to predict the class label. The relational Naive Bayes classifier exploits independence assumptions to achieve scalability. We introduce a weaker independence assumption to the effect that information from different data tables is independent given the class label. The independence assumption entails a closed-form formula for combining probabilistic predictions based on decision trees learned on different database tables. Logistic regression learns different weights for information from different tables and prunes irrelevant tables. In experiments, learning was very fast with competitive accuracy.


► A new statistical independence assumption for knowledge discovery in databases.
► Decision tree learning is applied to different tables in a database.
► The assumption entails a log-linear formula for combining single-table predictions.
► Logistic regression adaptively assigns weights to information from different tables.
► The classification system is accurate and very fast even for complex databases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 54, Issue 3, February 2013, Pages 1269–1279
نویسندگان
, , , , ,