کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
553862 873550 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identity disclosure protection: A data reconstruction approach for privacy-preserving data mining
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Identity disclosure protection: A data reconstruction approach for privacy-preserving data mining
چکیده انگلیسی

Identity disclosure is one of the most serious privacy concerns in today's information age. A well-known method for protecting identity disclosure is k-anonymity. A dataset provides k-anonymity protection if the information for each individual in the dataset cannot be distinguished from at least k − 1 individuals whose information also appears in the dataset. There is a flaw in k-anonymity that would still allow an intruder to discern the confidential information of individuals in the anonymized data. To overcome this problem, we propose a data reconstruction approach to achieve k-anonymity protection in predictive data mining. In this approach, the potentially identifying attributes are first masked using aggregation (for numeric data) and swapping (for nominal data). A genetic algorithm technique is then applied to the masked data to find a good subset of it. This subset is then replicated to form the released dataset that satisfies the k-anonymity constraint.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 48, Issue 1, December 2009, Pages 133–140
نویسندگان
, , ,