کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5549168 | 1402857 | 2017 | 10 صفحه PDF | دانلود رایگان |
- GAPDH binds to a conserved region in the 3â² UTRs of SCN1A and SCN3A genes.
- The binding of GAPDH to the conserved element alters gene expression.
- GAPDH mediates abnormal expressions of Scn1a and Scn3a under seizure condition.
- KD or BHB treament rescues abnormal expressions of Scn1a and Scn3a via GADPH.
Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3ⲠUTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3ⲠUTR and SCN3A 3ⲠUTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3ⲠUTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD.
Journal: Neuropharmacology - Volume 113, Part A, February 2017, Pages 480-489