کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5549222 | 1402859 | 2016 | 13 صفحه PDF | دانلود رایگان |

- TRPV3 mRNA and protein are expressed in the ventral tegmental area (VTA).
- Dopamine (DA) neurons in VTA co-expressing TRPV3 project to nucleus accumbens shell.
- TRPV3-agonists increase [Ca2+]i in VTA neurons.
- TRPV3 agonist enhance active lever pressings to self-administer sweet pellets.
- TRPV3 channels in VTA may be novel regulators of the mesolimbic DA reward pathway.
While dopamine (DA) neurons in the ventral tegmental area (VTA) drive the mesolimbic-reward pathway, confluent lines of evidence underscore the importance of transient receptor potential vanilloid (TRPV) channels as novel regulators of these neurons. Among the TRPV-subfamily, TRPV3 is of particular interest in reward, since active ingredients of flavour-enhancing spices in food serve as TRPV3 agonists and modulate DAergic neurotransmission. The nature of TRPV3 elements in the VTA and their role in driving the mesolimbic-DA-reward pathway has however, remained unexplored. We observed TRPV3 mRNA as well as TRPV3-immunoreactive neurons in the VTA of Wistar rats. We therefore explored whether these ion channels participate in modulating mesolimbic-DA reward pathway. In the posterior VTA (pVTA), 82 ± 2.6% of the TRPV3 neurons co-express tyrosine hydroxylase and 68 ± 5.5% of these neurons project to the nucleus accumbens shell (Acb shell). While ex vivo treatment of midbrain slices with TRPV3-agonist, thymol increased [Ca2+]i-activity in pVTA neurons, intra-pVTA injections of thymol in freely-moving, satiated rats enhanced positive reinforcement for active lever pressings in an operant chamber to self-administer sweet pellets. This behavior was attenuated by prior treatment with intra-Acb shell DA D1- and D2-like receptor antagonists. These results demonstrate a role for TRPV3 in driving mesolimbic-DA food-reward pathway, and underscores the importance of these channels in the VTA as key components processing reward.
Journal: Neuropharmacology - Volume 110, Part A, November 2016, Pages 198-210