کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5549486 1402875 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Miltirone protects human EA.hy926 endothelial cells from oxidized low-density lipoprotein-derived oxidative stress via a heme oxygenase-1 and MAPK/Nrf2 dependent pathway
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوشیمی بالینی
پیش نمایش صفحه اول مقاله
Miltirone protects human EA.hy926 endothelial cells from oxidized low-density lipoprotein-derived oxidative stress via a heme oxygenase-1 and MAPK/Nrf2 dependent pathway
چکیده انگلیسی

BackgroundOxidized low-density lipoprotein (ox-LDL) is an underlying cause of endothelial dysfunction, which is an early event in the pathogenesis of atherosclerosis. In our previous study, we established an ARE-driven luciferase reporter system and screened out several potential Nrf2 activators from Salvia miltiorrhiza Bunge.PurposeSince miltirone showed the most potent ARE-driven luciferase activity, the aim of this study was to test the protective role of miltirone against oxidative stress in endothelial cell and to investigate the underlying mechanistic signaling pathways.Study Design/MethodIn the present study, miltirone increased the expression of nuclear translocation and transcriptional activities of NF-E2-related factor 2 (Nrf2), which led to augmented expression of antioxidant-response element (ARE)-dependent heme oxygenase-1 (HO-1) and NAD(P)H-quinone oxidoreductase 1 (NQO1). Inhibition of Nrf2/HO-1 by RNA interference abolished miltirone-induced cytoprotective effects against ox-LDL, which suggested that Nrf2 and the downstream expression of HO-1 are required for the functional effects of miltirone. Ox-LDL-stimulated mitogen-activated protein kinase activation, ROS production, and miltirone dramatically inhibited synthesis of ROS, as well as decreased SOD and glutathione S-transferase (GST) in human EA.hy926 endothelial cells.ResultsMiltirone-induced Nrf2 and HO-1 expression was related to mitogen-activated protein kinase (MAPK) pathways. The activation of MAPK was partially dependent on the phosphorylation of the c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, but not P38 MAPK signaling. However, miltirone-induced Nrf2/HO-1 expression can only be effectively blocked by JNK inhibitor SP600125.ConclusionOur findings reveal that miltirone exerts protective functions on endothelial cells in response to ox-LDL-induced oxidative stress, and does so via Nrf2/HO-1, which provides novel insights into the antioxidant capacity of miltirone.

286

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Phytomedicine - Volume 23, Issue 14, 15 December 2016, Pages 1806-1813
نویسندگان
, , , , , , , ,