کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5560113 | 1403309 | 2017 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development of QSARs for parameterizing Physiology Based ToxicoKinetic models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
دانش تغذیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict physicochemical and biochemical properties of industrial chemicals of various groups. This model was based on the solvation equation, originally proposed by Abraham. In this work Abraham's solvation model got parameterized using artificial intelligence techniques such as artificial neural networks (ANNs) for the prediction of partitioning into kidney, heart, adipose, liver, muscle, brain and lung for the estimation of the bodyweight-normalized maximal metabolic velocity (Vmax) and the Michaelis - Menten constant (Km). Model parameterization using ANNs was compared to the use of non-linear regression (NLR) for organic chemicals. The coupling of ANNs with Abraham's solvation equation resulted in a model with strong predictive power (R2 up to 0.95) for both partitioning and biokinetic parameters. The proposed model outperformed other QSAR models found in the literature, especially with regard to the estimation and prediction of key biokinetic parameters such as Km. The results show that the physicochemical descriptors used in the model successfully describe the complex interactions of the micro-processes governing chemical distribution and metabolism in human tissues. Moreover, ANNs provide a flexible mathematical framework to capture the non-linear biochemical and biological interactions compared to less flexible regression techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Food and Chemical Toxicology - Volume 106, Part A, August 2017, Pages 114-124
Journal: Food and Chemical Toxicology - Volume 106, Part A, August 2017, Pages 114-124
نویسندگان
Dimosthenis Î. Sarigiannis, Krystalia Papadaki, Periklis Kontoroupis, Spyros P. Karakitsios,