کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
558756 1451748 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eigenfilter design of linear-phase FIR digital filters using neural minor component analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Eigenfilter design of linear-phase FIR digital filters using neural minor component analysis
چکیده انگلیسی

This paper proposes a minor component analysis-based neural learning algorithm for designing linear-phase finite impulse response digital filters. The objective function to be minimized in the least-squares design can be formulated as the eigenvalue problem for solving an appropriate real, symmetric, and positive-definite matrix. To achieve the eigenfilter design, an alternative neural learning rule based on the minor component analysis algorithm is exploited. The optimal filter coefficients corresponding to the eigenvector of the smallest eigenvalue of the positive-definite matrix can be achieved in an iterative manner, avoiding the complex computation of eigenvalue decomposition. Furthermore, the learning step parameter that affects the convergence performance is investigated empirically. The simulation results indicate that the proposed neural-based approach can be applied to eigenfilter design and yields a lower computational complexity compared with traditional matrix algebraic-based approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 32, September 2014, Pages 146–155
نویسندگان
, , , ,