کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
558838 875008 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel generalized fuzzy c-means clustering with spatial information for image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Kernel generalized fuzzy c-means clustering with spatial information for image segmentation
چکیده انگلیسی

The generalized fuzzy c-means clustering algorithm with improved fuzzy partition (GFCM) is a novel modified version of the fuzzy c-means clustering algorithm (FCM). GFCM under appropriate parameters can converge more rapidly than FCM. However, it is found that GFCM is sensitive to noise in gray images. In order to overcome GFCMʼs sensitivity to noise in the image, a kernel version of GFCM with spatial information is proposed. In this method, first a term about the spatial constraints derived from the image is introduced into the objective function of GFCM, and then the kernel induced distance is adopted to substitute the Euclidean distance in the new objective function. Experimental results show that the proposed method behaves well in segmentation performance and convergence speed for gray images corrupted by noise.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 23, Issue 1, January 2013, Pages 184-199