کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
559858 875111 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast-converging space-time adaptive processing algorithm for non-Gaussian clutter suppression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
A fast-converging space-time adaptive processing algorithm for non-Gaussian clutter suppression
چکیده انگلیسی

The normalized fractionally-lower order moment (NFLOM) algorithm differs from the normalized least mean square (NLMS) algorithm in that it minimizes the lower order moment (p<2) of the error rather than the variance (p=2). This paper first evaluates the performances of the NFLOM for space-time adaptive processing in heavy-tailed compound K clutters in terms of the excess mean square error (MSE), misalignment, beampatterns, and output signal-to-interference-and-noise-ratio (SINR). The results show that the MSE curve of a small-order NFLOM exhibits faster convergence but higher steady-state error than a large-order NFLOM. Second, this paper proposes a new variable-order FLOM algorithm to dynamically change the order during adaptation, thus achieving both fast initial convergence and low steady-state error. The new algorithm is applied to STAP for Gaussian and non-Gaussian clutter suppression. The simulation results show that it achieves the best compromise between fast convergence and low steady-state error in both types of clutters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 22, Issue 1, January 2012, Pages 74-86