کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
560345 875152 2007 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Temporally correlated source separation using variational Bayesian learning approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Temporally correlated source separation using variational Bayesian learning approach
چکیده انگلیسی

Basic blind source separation (BSS) algorithms did not adopt time information of signals. They assumed that each source was independent and identically distributed (i.i.d.). In the paper, we propose to use time structure and prior information of sources in order to improve separation. Modeling source by generalized autoregressive (GAR) process, we can tackle the problem of temporally correlated source separation using variational Bayesian (VB) learning approach. The advantages of our proposed algorithm are that (i) it makes full use of time structure of sources; (ii) it can separate different type of sources in noisy environment; (iii) it can avoid overfitting in separation. Experimental results demonstrate that our algorithm outperforms VB separation algorithm based on i.i.d. source model and second-order statistical decorrelation algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 17, Issue 5, September 2007, Pages 873-890