کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
560813 875199 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hybrid PSO-GD based intelligent method for machine diagnosis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
A hybrid PSO-GD based intelligent method for machine diagnosis
چکیده انگلیسی

This paper presents an intelligent methodology for diagnosing incipient faults in rotating machinery. In this fault diagnosis system, wavelet neural network techniques are used in combination with a new evolutionary learning algorithm. This new evolutionary learning algorithm is based on a hybrid of the constriction factor approach for particle swarm optimization (PSO) technique and the gradient descent (GD) technique, and is thus called HGDPSO. The HGDPSO is developed in such a way that a constriction factor approach for particle swarm optimization (CFA for PSO) is applied as a based level search, which can give a good direction to the optimal global region, and a local search gradient descent (GD) algorithm is used as a fine tuning to determine the optimal solution at the final. The effectiveness of the HGDPSO based WNN is demonstrated through the classification of the fault signals in rotating machinery. The simulated results show its feasibility and validity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 16, Issue 4, July 2006, Pages 402-418