کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
561664 875320 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distributed parameter model updating using the Karhunen–Loève expansion
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Distributed parameter model updating using the Karhunen–Loève expansion
چکیده انگلیسی

Discrepancies between experimentally measured data and computational predictions are unavoidable for complex engineering dynamical systems. To reduce this gap, model updating methods have been developed over the past three decades. Current methods for model updating often use discrete parameters, such as thickness or joint stiffness, for model updating. However, there are many parameters in a numerical model which are spatially distributed in nature. Such parameters include, but are not limited to, thickness, Poisson's ratio, Young's modulus, density and damping. In this paper a novel approach is proposed which takes account of the distributed nature of the parameters to be updated, by expressing the parameters as spatially correlated random fields. Based on this assumption, the random fields corresponding to the parameters to be updated have been expanded in a spectral decomposition known as the Karhunen–Loève (KL) expansion. Using the KL expansion, the mass and stiffness matrices are expanded in series in terms of discrete parameters. These parameters in turn are obtained using a sensitivity based optimization approach. A numerical example involving a beam with distributed updating parameters is used to illustrate this new idea.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 24, Issue 2, February 2010, Pages 326–339
نویسندگان
, ,