کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5631452 1580866 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Calibrated bold fMRI with an optimized ASL-BOLD dual-acquisition sequence
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Calibrated bold fMRI with an optimized ASL-BOLD dual-acquisition sequence
چکیده انگلیسی


- An ASL dual-acquisition sequence is proposed for calibrated fMRI.
- It combines a background-suppressed 3D-GRASE readout with 2D multi-slice EPI.
- Compared to dual-echo EPI, ASL tSNR increases 3-fold without affecting BOLD tSNR.
- Fractional CMRO2 changes of 12% were measured in response to a motor task.

Calibrated fMRI techniques estimate task-induced changes in the cerebral metabolic rate of oxygen (CMRO2) based on simultaneous measurements of cerebral blood flow (CBF) and blood-oxygen-level-dependent (BOLD) signal changes evoked by stimulation. To determine the calibration factor M (corresponding to the maximum possible BOLD signal increase), BOLD signal and CBF are measured in response to a gas breathing challenge (usually CO2 or O2). Here we describe an ASL dual-acquisition sequence that combines a background-suppressed 3D-GRASE readout with 2D multi-slice EPI. The concatenation of these two imaging sequences allowed separate optimization of the acquisition for CBF and BOLD data. The dual-acquisition sequence was validated by comparison to an ASL sequence with a dual-echo EPI readout, using a visual fMRI paradigm. Results showed a 3-fold increase in temporal signal-to-noise ratio (tSNR) of the ASL time-series data while BOLD tSNR was similar to that obtained with the dual-echo sequence. The longer TR of the proposed dual-acquisition sequence, however, resulted in slightly lower T-scores (by 30%) in the BOLD activation maps. Further, the potential of the dual-acquisition sequence for M-mapping on the basis of a hypercapnia gas breathing challenge and for quantification of CMRO2 changes in response to a motor activation task was assessed. In five subjects, an average gray matter M-value of 8.71 ± 1.03 and fractional changes of CMRO2 of 12.5 ± 5% were found. The new sequence remedies the deficiencies of prior combined BOLD-ASL acquisition strategies by substantially enhancing perfusion tSNR, which is essential for accurate BOLD calibration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 142, 15 November 2016, Pages 474-482
نویسندگان
, , , ,