کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
565065 875673 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Input–output data filtering based recursive least squares identification for CARARMA systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Input–output data filtering based recursive least squares identification for CARARMA systems
چکیده انگلیسی

This paper uses an estimated noise transfer function to filter the input–output data and presents filtering based recursive least squares algorithms (F-RLS) for controlled autoregressive autoregressive moving average (CARARMA) systems. Through the data filtering, we obtain two identification models, one including the parameters of the system model, and the other including the parameters of the noise model. Thus, the recursive least squares method can be used to estimate the parameters of these two identification models, respectively, by replacing the unmeasurable variables in the information vectors with their estimates. The proposed F-RLS algorithm has a high computational efficiency because the dimensions of its covariance matrices become small and can generate more accurate parameter estimation compared with other existing algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 20, Issue 4, July 2010, Pages 991-999