کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
566848 | 876031 | 2006 | 16 صفحه PDF | دانلود رایگان |

A rank-niche evolution strategy (RNES) algorithm has been developed in this paper to solve unconstrained multiobjective optimization problems. A required number of Pareto-optimal solutions can be generated by the algorithm in a single run. In addition to the operations of recombination, mutation and selection used in original evolution strategy (ES), an external elite set which contains a given number of non-dominated elites is updated and trimmed by a clustering technique to maintain a uniformly distributed Pareto front. The fitness function for each individual contains the information of rank and crowding status. The selection operation using this fitness function considers the superiority and distribution simultaneously. Eight test problems illustrated in other papers are used to test RNES. For some test problems the Pareto-optimal solutions obtained by RNES are better than those obtained by GA-based algorithms.
Journal: Advances in Engineering Software - Volume 37, Issue 10, October 2006, Pages 684–699